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SPECTRA AND COVARIANCES FOR "CLASSICAL" NONLINEAR SIGNAL
PROCESSING PROBLEMS INVOLVING CLASS A NON-GAUSSIAN NOISE

PART I. ANALYTIC RESULTS AND NUMERICAL EXAMPLES
1. INTRODUCTION

Non-Gaussian noise fields play a critical réle in modern
signal processing because of the frequently dominant effects of
such noise and interference in a wide variety of applications.
Communication theory generally, and specifically telecommunica-
tions, electromagnetic and acoustic scattering, man-made and
natural ambient noise, optics, and underwater acoustics, are
common areas of interest in this respect. 1In the present report
we are concerned primarily with underwater acoustic noise
phenomena, but the models and results are canonical, that is,
they take forms invariant to the particular physical application
in question.

Specifically, we are concerned with various second-order
statistics of non-Gaussian noise processes and fields after they
have been subjected to different types of nonlinear operations,
such as rectification and modulation. A generic problem here is
the passage of non-Gaussian noise through a zero-memory nonlinear
(ZMNL) device. The desired output statistics are typically the
mean (dc), mean intensity (power), the covariance or correlation
function, and the associated spectra. These last include
wavenumber spectra in the case of noise fields, as well as the
more general frequency-wavenumber spectra obtained by joint
temporal and spatial Fourier transformations. Typical "class-
ical" problems include: (i) rectification, (ii) determination of
output spectra and covariances, (1iii) calculation of (output)
signal-to-noise ratios, (iv) modulation, (v) demodulation, and

(vi) special systems, as for example, the spectrum analyzer.
These and other problems involving ZMNL devices are described in
detail in [1; chapters 5 and 12 - 17]. What is new here is the
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use of the approximate second-order probability density functions

and characteristic functions in the above applications when the
noise processes are non-Gaussian.

A full treatment is given in a current study by Middleton,
[2], which is ai.. expanded version of his recent paper [3], which
employs some of the results of the present report, namely, the
calculated covariances and spectra. Here, we are content to
summarize the pertinent analytic results, the corresponding
examples of calculated covariances and spectra, and the various
computational procedures associated with their evaluation. The
details of the derivations are provided in [2] and [3]. Included
here, also, is a selection of illustrations of the analytic
results.

2. ANALYTICAL RESULTS: A SUMMARY

In the present study, we address three classical problems
where the goals are the calculation of the covariance and
associated intensity spectrum. Specifically, we consider:

Problem I. The half-wave v-th law rectification of Class A
noise fields and processes;

Problem II. Phase modulation of a carrier by a Class A noise

process; and
Problem IIXI. Frequency modulation of a carrier by a Class A

noise process.

Class A noise, as noted in section 3 of [2], [3], is a
canonical form of interference characterized by a coherent
structure vis-a-vis the (linear) front-end stages of a typical
receiver: negligible transients are produced at the output of
these stages. Class B noise, on the other hand, is incoherent
and highly impulsive, such that the front-end stages of the
receiver generate an output which consists solely of (over-
lapping) transients. Hecre, the Class A models are tractable in
the required second-order distribution and characteristic
functions, whereas the Class B models are not and must
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consequently be appropriately approximated in second-order; see
[4] and [5] for additional information. In the present report,
we shall consider examples of Class A noise only.

2.1 THE SECOND-ORDER CLASS A CHARACTERISTIC FUNCTION

In applications [1] - [3], the second-order characteristic
function, Fz(iil,iiz), plays a key rdle: from it, we may obtain
the aforementioned statistics of the outputs of ZMNL devices,
spectra of angle-modulated carriers, and other usually second-
order statistics of various nonlinear operations arising in a
variety of communication and measurement operations.

(See [2], [3] for further discussion.)

Here, we specifically use the approximate Class A noise

characteristic function, F2, including an additive Gaussian

component, given by

® ) m1+m2
ml,m2=0
® n
{Rp) 1 4(2)
X %;% oy exp[- 3 1+n,m2+n(E1'Ez)] ' (2.1)

where A (=A,) is the "overlap" index, and where

(2) - g2 2 2 2 (n)
1+n,m2+n(51,52) = El O'm1+n + Ez 0m2+n + 2{1!.2 KL"‘G ¢ (2.2a)
m+n . = 1 2, _ 2.. ) .
[——— + PA] QZA' QZA 2A<B > A<LL" >; PA OG/QZA' (2.2b)
(n) _ [ .]
Kiag = (P kp/A + kg Tp) 29 (2.2c)

and kL, kG are the normalized covariances of the non-Gauss and

Gauss components, respectively. Thus, lkL,Gl S 1.
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Here, p (=pp) is the "overlap" correlation function

=

1 - Bft’| for glt’] s 1 _
p(t’) = } . B =1/T_, (2.3)
0 for Bit’| > 1 s

in which Ts is the mean duration of a typical noise-signal of

intensity <Bg>/2 = <L2>. The time delay t’ is given by

=1 -8R or =t (= ty-ty) (2.3a)

respectively, for space-time fields and received temporal
processes. The path delay AR/co (= |R2 - Rll/co) accounts for
the time differential between propagation paths to the points at
which processing occurs, cf. figure 2.1 ff, Case A. The
guantities 2,5 and oé are, respectively, the intensity of the
non-Gaussian and Gaussian components which constitute the general
Class A model used here. (However, we note that the present
Class A mcdel belongs either to the strictly canonical Class A
cases, where ¢ 1 interfering sources are equidistant from the

observer, or more generally, to the much broader class of
situations in which the effective source distribution is
concentrated in an annulus whose inner-to-outer radii have a
ratio O(1/2) or less. The former is exactly represented by (2.1)
to second-order, while the latter is approximately so
represented, albeit a good approximation as long as the
aforementioned source annulus is not too large. See
[5; section V, C], for example. For an exact treatment, see also
[6], in an important class of physical models. Finally,
differentiation of Fz, (2.1), in the usual way, gives us the
(exact) covariance of the composite Class A and Gauss field,
namely,

2

3
F2 K, + K

- - ’ (2.4)
A+G T, 20 B O

which in normalized form is
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k, + T’ k
L G (2.4a)

kA+G(AR,1’) = ‘——-I—-T .

In practice, A is usually less than unity, say 0(0.1 - 0.3)

m,+m,+n
typically, so that only a comparatively few terms in A are

needed for numerical evaluation of (2.1) and the statistical
quantities derived from it, cf. section 2.2 ff. Note that when
Blt}l 21, p = 0, and T''= 0, we get

(- ]

oA }: A~ exp(- 3E20 ]]

=0

e A Ef: %T exp[ lig i]]

n=0

= F (i&)y Fi(i&y), (2.4b)

as expected: there is now no correlation between process samples.
With a Gaussian component, these will be correlated, of course,
unless |t} » «, so that ke » 0, cf. (2.2c).

2.2 PROBLEM I: HALF-WAVE v-TH LAW RECTIFICATION
( STATIONARY AND HOMOGENEOUS FIELDS)

Here we consider the problem of obtaining the second-order
(second-moment) statistics, MY' of a sampled noise field, a(R,t),
after passage through a ZMNL device, g, when the noise 1is
generally non-Gaussian. Various processing configurations are
possible. We show two in figure 2.1, below. Analytically, we
have, for stationary and homogeneous inputs [l; section 2.3-2]

J J f(1£ ) f(lEz)
1 2

M_(AR,T) = g(x,)9(x,) =
Y 1 2 (2n)

X Fz(iil,iEZ;AR,t)x d{l d{z =Yy Yy o« (2.5)
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where AR = R,-R;, T = t,-t,, and f(i¥) is the Fourier transform
of the ZMNL device with Y, = y(Rl,tl), etc. In the present
cases, we have specifically

£(if) = g T(v+1)/(iE)¥Y , v > -1, (2.6)

for these half-wave v-th law rectifiers [1; (2.101a,b)].

SPATIAL SAMPLING -» «— SIGNAL PROCESSING —
2-SENSOR ARRAY ZMNL
A. x(R,,t,) Y Y, (R, , t +7) y
1Y
gt ) o o 2L aet o
a{R, t 32
x(R,,t.) y 1 Y,Y
252 ) Y . [ rae V12
d ¢ >
Y(R,,t,+t) Y(R,,t,)
1171 2" 72 M, (BR,T)
B R (ty) (t,) Y
. a = x Y Y
1
gl ) L~ —d3[( yat} -
a(R, t ﬁ
1 Y,Y
c — 0 x 2]t 1a|Y1¥2,
_] _] 4 <>
x(t,=t,+1) y(ty+r) ,

Figure 2.1 A. Two-point sensor array (ﬁz) giving sampled field
at two space-time points. =~ B. A general array (ﬁ) (preformed
beam), converting the field a(R,t) into a single (time) process
x(ty). Both are followed by ZMNL devices, delays, and averaging,
as indicated schematically.
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For the Class A non-Gaussian noise inputs of section 2.1
above, we find that the (normalized) second-moment My for the
resulting rectified field is now

© m+m
A
M, (BR,T) = exp[-A(2-p)] LA(;lp)] E 1_21_
ml,m2=0
n+m, v/2 n+m, v/2
I’ I
X5 + T A + T Bv m,,my,n (2.7)

where we have further postulated the noise field to be isotropic,
AR - |AR|, and where specifically,

= 2 +1 v,1 .2
Bvla =B (Ylml,m ') [v ] 2 1[— %’- 2i2+Y )
2(v 1-v 1-v 3 .2
+2Y T [5 +1] 2F1[—§—,—§—,2,Ya] , (2.7a)
2k, + T kg
Y = [ 1+n ]% [ e ]% ; a= (m,my,n) , |Y | <1.
’ ’

AT a_ T (2.7b)

Specifically, also, we have the following normalized forms

N - —
M, = MY/Q;AZV/4n ; € =gt , B=1/T , cf. (2.3),

~
AR

AR/BL , B = correlation distance, &R = |R2-R1| . (2.8)
For numerical results, we select the following models for the

space-time covariance functions of the isotropic and stationary

non-Gaussian and Gaussian components of the input noise field:

kL =3 exp(-ARz/A - —(Aw T'/B) ] = exp[-&i - —(Aw t) ) s (2.9a)

kG = exp[-ARz/Aé - %(Ath'/ﬁ)Z] = exp[-tﬁ!z(AL/AG)2 - %(A Gf )2] ;
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A
86, = Bw /B, AGG = Mwg/B - (2.9b)
Here, AG is a correlation distance, and AwL, AwG are angular
frequency spreads associated with the respective non-Gaussian and
Gaussian components of the input field. Note that if we define
the correlation distance a4, as that where kL = 1/e (t’' = 0),
then AL = ARL, etc.

For the special cases of v considered here, we also observe

L

(from [1; (A.1-39)]) that B, may be expressed in closed form:

BO(Y) = n + 2 arcsin(Y) , (2.10a)

v i 2)% | 2.10b

Bl(-) = Y arcsin(Y) + [1 - Y ] + 7Y ‘ (?.10b)
(1L 42 (n . 3 21" 5 10

Bz(Y) = [5 + Y ][5 + arc31n(Y)] + 7Y[1 - Y ] . (2.10c)

2.2-1 GAUSS PROCESSES ALONE (A=0)

When only a Gauss noise field is originally present, that is,
A = 0, for example, 2,, = 0, (2.7) reduces to the classical
result [1l; page 541, (13.4a)]:

\Y]
M, = 1240 Mo oY o Y, = kg | (2.11)

A
! = .
My y'A=0 Bv|a=0 ! Y y ' a G

For comparison with the non-Gaussian cases (A>0), we choose to
have equal input noise intensities. This means that

2

¢A=0 = 0q + QzA = QZA(I + ') ,

so that

A

Myla=o = (1 + r)¥ B

ola=o + Yo = kg (2.12)

A
and ﬁ; is then to be compared with My, A > 0. When I'' is small,
as is usually the case, we can often replace (1 + r')“ by unity.
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At this point, following figure 2.1, we distinguish two
classes of operation. (A), where a pair of point sensors is used
to sample the noise field aud we wish to consider both the space
and temporal correlations of the sampled field at t e two points
(Ry/ty) s (Ry,ty): and {Ej), where the space-time field is
cci.verted into a random process, x(t), by the beamforming array
(R), with an associated directionality embodied in the resultant
beam (vide [7; sections IV B and VI A]).

2.2-2 CASE B, FIGURE 2.1

Let us consider the simpler case (Case B) of the time process
first, cf. (B). For this, we set AR = 0 formally in (2.7) et
seq. above, since x = ﬁ a(R,t) here and 7' =t = tz'tl’ cf.
(2.3a). See also [3; (3.2) et seq. and (3.11la)]. Then our ad
hoc illustrative models of the process covariances kL, kG, are,
from (2.9a,b), at once”

kL = kL(t) = exp[- %(Awa/ﬁ)z] = exp[- %(d& f)z) ‘ (2.13a)

kG = kG(r) = exp(- %(Awa/B)z] = exp[- %(d&ct)zl . (2.13b)

Accordingly, (2.7) reduces to
Case B: My(O,f) = My(t)B = (2.7), with Y, = (2.7b),
and (2.13a,b) and AR = 0 therein. (2.14)

We note that when |[f] 2 1, p = 0, and ﬁy(o,lfl 2 1) reduces to a
simpler relation [vis-a-vis (2.7)], viz.:

i physically derlved model of kG and k may be made from
[3; (3.11a)])] with L = R L, R = (2.9) etc., where L is typically
given by (3; (3.3)], for example.
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5 o © Am1+m2 m, ’ v/2 m, ’ v/2
y(t)n E mlm,t [TA + T 2tT Byla ¢
ml,m2=0
(2.14a)
where (2.7b) becomes
T’ kG
Ya = my L m P p =0, {2.14Db;
—_— ’ — ’
2o 2 ]
in B |-

Special cases of interest are:

I. THE INTENSITY E(yz): t=0,p=1,m =m =0, and (2.7),
(2.14) reduce to

[- ]
2 Ao _ _ -A } : A" (n ,)“
Y |norm My.3)B = My(0,0) = Bv asn - © T (A + T p

(2.15)

where now Ya= =1, e.qg., kL(O) = ] etc., and Bv is independent

n
of n, for example, for Ya =1,

2n for v=0
Bv|a=n = n for v=1, cf. (2.10) . (2.16a)
3n/2 for v = 2
For general v, Ya = 1, we have (from [1; (A.1-34)])
B = 2n%r(vi¥) , v 20 (2.16b)
via=n ! °
Thus, (2.15) becomes
= .n v
2 _a _2 _ ook -A § A" (g ,
Y lnorm My(o)B My(0,0) 2n ‘T(v+k) e nT |5 * T .
n=0 (2.17)

10
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The unnormalized form is, from (2.8),

— -1
y M (0)p = M (0,0) = 5 25a T(v+h) H V) (A,T7) (2.18)
with
(v) .. _ _-A — A" (n AV
Hl (A, T') = e ‘rﬁ[x'f'r]
n=0
1 for v =0, (2.18a)
= 1 + 1/ for v = 1 , (2.18Db)
1/A + (1+T")%2 for v = 2 . (2.18¢)

For other values of v (>0), we must evaluate H{v) numerically.

II. THE MEAN VALUE, y; |f]| » =

Now p = 0, n =0, Ya = 0, and (2.7) reduces directly, upon
use of (Z2.18), to

2 v/2]|?

v =A =A o) = Zﬂ _A 2‘2 m ')
Y |norm My(w)B My(o’ ) =T [ 2 € § m! [A +T
m=0

= rz[ﬁgl] 1{*2)(a,r")? .

(2.19)

The unnormalized form of (2.19) is, from (2.8),

2 2° 220 _2(ve1) L(v/2) )2
o=y (=g = M0, = — 2R P2 (] w2 ar)?, (2.20)

and for v even, we find, from (2.18a,b,c)

1
1 A

11
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— 2
III. THE CONTINUUM INTENSITY: y> - ¥

From (2.18) and (2.20) we get at once the general result
for v 2 0,

_ 2 r v+1 2
= v2 _ T = oV oV JT(vtk) (V) _ 2 (v/2)
p.=y’ -3 =29}, —i;;gl H —L;;gl B , | o(2.22)

which is the generalization of [1; (13.7)], in the classical
purely Gaussian cases, to the present, dominant non-Gaussian
noise component Qop (2> oé). In these classical cases, we can
show at once that

@

n v
1im B{¥) @Y 5 1im ™A E A_ (n2 aé) > ol (= 9Y) , (2.23)

1 2A n! A
QZA*O Q-0 =0
where QZA - » implies A 2 0 and Bg > 0, cf. (2.2b), so that

(2.22) becomes, as expected,

2 ks rz(!%%J
= 9V v JT(v+)
Pc Gauss 2 oG Zn% an (>0) , v20. (2.24)

Figure 13.5 of [1] shows (2.24) as a function of rectifier
law (v), as well as (2.18), (2.20) in these Gaussian cases. In
the present, more general, situation of Class A noise, the
results are more complex, as expected, with now two additional
parameters (A,T'’), descriptive of this much broader class of

interference.

12
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2.2-3: CASE A, FIGURE 2.1

We turn now to the more general problem of the covariance of
the Class A non-Gaussian random field, sampled according to
procedure (A), shown schematically in figure 2.1 earlier. Here,
x = a(R,t), sensed at (Rl’tl)’ (R2't2)’ where L = L, cf. (3.3) in
{3; (3.2)]. Equation (2.7) applies here, with AR # 0 (as well as
for AR = 0), and we use (2.9a,b) for our illustrative examples,
which are discussed in section 3 following. At this point, we
recall from (2.3a) that the proper time delay to use is
T’ =T - AR/co in p = p(t’), and in some of the structural
elements of the noise field covariances, cf. [3; (3.11b,c)].

CASE I: T’ =0
From (2.7), we have p = 1, m, =m, = 1, giving

-]

A A -AN A" (n O . AR
My(AR,O) e 2 T+ T ] Bylgep ¢+ P =1/ 1 Q ,(2.25)
n=0
where (2.7b) is specifically
n A A
z kp(8R,0) + I’ k. (8R,0)
Y = . (2.25a)
a=n D,
A

For calculations, (2.9a,b) are used, with B, given by (2.7a),
where (2.25a) provides Y,- When AR = 0, (2.25) reduces to (2.15)
et seq. for the total intensity of the field observed at R, = R,.

13
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”~
CASE II: AR » o, |t’| > 1

When AR - ©, we obtain different results, depending on t’'.
Here p = 0, Ya -+ 0, cf. (2.9a,b) in (2.7b), and therefore n = 0.
Accordingly, (2.7) becomes

2

= Yoorm ¢ (2-19) - (2.26)

A | A A
M ®, 4 > 1 = M @, © = M 0,x
y( T ) y( ) y( )

The fact that &h 2 « ensures that Ya » 0, a behavior similar to
that for Case (B) above, when we consider the purely Gaussian
noise process, section Z2.2-1.

”~
CASE III: AR » =, 0 < |t’| <1

Here, p > 0 while Ya -+ 0, so that Bv’ (2.7b), becomes r2(v+5)
once more. The second moment function (2.7) is now

b m,+m

172
~ ) 1 A(l-
M (BR,t0) = 17 [¥52] expr-A(2-p)] [ (mlﬁ)izz
ml,m2=0
hd n {n+m v/2 (n+m v/2
A 1 ' 2
x E (ol 1. ] [ it r'] ' (2.27)

n=0

which is a minor simplification of (2.7).

”~

CASE IV: AR 2 =, |t'| =0

In this special situation, where t = AR/c0 % o in such a way
that v’ = 0 and therefore p = 1, Ya = 0, we obtain directly from
(2.27) the comparatively simple result,

G (0,0) = r2[¥E)] (V)
M (=,0) =T [ > ] #® (> 0) . (2.28)

14
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2.2-4: REMARKS

At first glance, as AR »* =, we might expect M, always to

reduce to ;2, e.g., K, =M, - ;2 = 0 for the covaziance of the
rectified space-time field. This is expectedly the case for the
covariance (and second-moment) function of the input Class A and
Gauss nolise field components a(R,t), as we can see directly from
(2.9a,b), or from [(3; (3.11b,c)] for example, in the physically
derived cases. However, the process or field y = g(x) here is
the result of a nonlinear operation, cf. (2.5), (2.6), which
severely distorts the input waveform and generates all kinds of
modulation products, associated with the spatial as well as the
temporal variations of the input field. This accounts for the
departures in Cases III, IV of My(w,f') from ;2, while certainly
M (@,T") % = 0, (since x = 0 initially here).

From the various limiting results above, we see that

M, (0,0) > M (=,0) and M_(0,0) > M (0,=) , (2.29a)
and
M (=,0) %My(o,w) depending on A, T'’, and v , (2.29b)
with
M,(0,0) = M _(0,®) >0, cf. (2.19) and (2,20) , (2.29c)
2
M (=) =M (0,@) =¥ , cf. (2.20) and (2.26) , (2.29d)
whereas
2
M_(0,0) > M (0,) =M (»,0) =X =0. (2.29e)

Finally, we note that (2.11), (2.12) apply here, also, for
the Gauss-alone cases, where now

2 (1 +Tr")"B =0 .

2
QZA(I +TIT’') 20 and B vla

G v]a=0

15
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2.2-5: SPECTRA

The various intensity spectra associated with the output of
the processor (cf. figure 2.1} are important a'sc, as they show
how the energy in this output is distributed. Here, we consider
two types of spectra, respectively, for the rec*ified spatial
field (A) and for the process (B), namely the wavenumber and the
frequency spectrum of y(R,0) and y(0,t). In particular,
wavenumber spectra are useful in the analysis of spatially
distributed phenomena, paralleling the analysis of time-dependent
phenomena.

I: WAVENUMBER SPECTRUM
The wavenumber intensity spectrum is defined here by

Wy(k,0), = wz(k,r)ylt=0 = IJ M/ (BR,0) exp(ik-8R) d(8R) (2.30a)
AR

[--]
= 2n I M, (OR,0) J_(kOR) AR d(BR) = W,(k,0)  , (2.30b)
0
with

k = (kx,ky) , AR = |AR| , k = |k] (2.30c)

for these isotropic fields, where k is an (angnlar) vector

wavenumber. Using the normalization of (2.8), we get, with
k = kAL,

Wy(k,0)

A A A A
W,(k,0) = =2n | M_(x,0) J_(kx) x dx (2.31)
2' Ty A2 2V 92“/4n I ! o

L 0

Yy

for the normalized wavenumber intensity spectrum.

16
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Since ﬁy(m,O) is nonvanishing, cf. (2.28), there is a dc
component, or &é-function, in the general wavenumber spectrum.
We will use the relations

@
A

J x J (ﬁx) dx = i s(k - 0) k = [ﬁz + k ]% = |£| k = (k ¢)
o " ! X Y ! ! !
0 (2.32)

A
where we must remember that k is two-dimensional. With v a
vector wavenumber defined by
A A
k =2n9 [= (9,¢)] , k = 2n0 = 2n|%]| , (2.33a)

and using the relation

s(ax - b) = 1 6[x - g} for a > 0 , (2.33b)
we also show that
A A _ 1 A 1 .
§(k -0 &(k -0) = —x 5(k-0) = 3= 8(9-0)
Y 2nk (2n)°%

= —L1 _ 5(5.-0) 5(9.-0) , 9 =[%], © = [02 + 9 ]]5 (2.34)
(2n)2 X Yy ‘ ’ x Y : )

Applying (2.32) - (2.34), with

A A A A A
Wy(k,4)y, = 2n J x J_(kx) [My(x,O) - My(w,O)] dx

0
[- ]
A A
+ 2n My(o,O) I x Jo(kx) dx (2.35a)
0
W (k 2n)2 M (,0) &(k._-0) 8(Kk -0
= wz(k'o)y-cont + (2rn) }'( :0) & x ) &( vy~ )
a. (k.0 + M (®,0) §(9.-0) &(%. -0 (2.35b
= Wy (K00, one * Hy(=,0) 8(5,-0) 8(5,-0) , .35b)

17
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A A
which defines wz(k,O) Ny the continuous portion of the

y-con
. 2 - .
spectrum and shows the dc term in k- or v-space, as convenient.

A
It is W,__,,t With which we are concerned in the specific

numerical examples of section 3 ff.

II. FREQUENCY SPECTRUM

Here we employ the Wiener-Khintchine theorem [1; (3.42)] to
write for the frequency spectrum of y

Wy(f) = 2 J My(O,r) exp(-iwt) dr = Bo £ ﬁy(o,f) cos(wt) dt,(2.36)

where

A
B, = Q}A ZV/KB; T =6t; w=2nf; & =w/p; ~ £ =£/. (2.36a)

Accordingly, we define the normalized frequency intensity
spectrum of y as

A _ A . - a R
W (£) = W (f)/B = j M (0,) cos(&t) df . (2.37)

0

4

2

A -
Again, there is a dc component, since MY(O,w) =y~ (> 0),

cf. (2.20). We have

W(f) = T [ﬁ (0,%)-M_ (0 ©)| cos(at) at + 18 (0,o) 8(F-0), (2.38)
Y : y' '’ y' '’ 2 Ty ! !

since

I cos(wx) dx = n §(w-0) = % s§(£-0) .
0

18
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As in the wavenumber cases above (Case I), we are concerned with
the continuous part of the spectrum, viz.

A < A . ._2 R -
W (£) ot = I [My(O,r) -y ] cos(wt) dt , (2.39)
0

which is also illustrated numerically in section 3 ff.

III. WAVENUMBER FREQUENCY SPECTRUM

The wavenumber frequency spectrum is defined by

Wz(k,w)y = jj My(AR,t) exp(ik-AR-iwt) d(AR) drtr , (2.40)

with w = 2nf. The associated wavenumber spectrum Wz(k,O) used in

In normalized form, we have

(2.30) is obtained from w2(k’r)|r=0'

for (2.40), in these isotropic cases,

A A

. 2
W, (k@) = [2v ey

-1
va AL/(4u5)] Wy (k)

A ~ A A N ~ R
= IJ M_(OR,T) exp(ik-AR-iaf) d(AR) dt ;

A
[ My (x,€) 3 (kx) exp(-iat) x dx dt . (2.41)
0

The various dc components are readily extracted, as in Cases I
and II above. Numerical examples of this joint intensity
spectrum are reserved to a possible subsequent study. The
results of section 3 show the marginal spectra (Cases I, II) of
this more general situation.
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2.2-6: FREQUENCY AND PHASE MODULATION
BY CLASS A AND GAUSSIAN NOISE

This is a Case (B) situation, cf. figure 2.1, where AR = 0
and we are concerned only with the received (non-Gaussian) noise
process which is used to angle-modulate a (high frequency)
carrier fo. For the analysis, see [3; section II].

The general result for the covariance of the carrier
modulated by Class A and Gauss noise is found to be

_ 1,2 . 2 ol
K, (T)asg = 22 Re[exp[lwor pZe(t)g - A(2-p)

+ 2A(1-p) exp[-Dggo/A]]] , (2.42)

where now, cf. [1; (4.2),(14.14c)],

<l

2(t)g = (oé or %Q2A] J (lTt]=-A) k(A) dx (D, = Dp)
A|FM 0
= 1 1 - cos(wr)
[1 or A] [ WG or 1)(f) % af . (2.42a)
0

Also, cf. [1; (14.2), (14.14c)],

Q(t)G = [oé or %QZA] {k(0) - k(t)](G or L) (Do = DP) (2.42b)
A|PM
and
2
e » QOIFM = J Wy(£) df/w® or 2 |p = 2 - (2.42¢)
0

20
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For our numerical examples, we use the RC-spectrum of
[1; section 14.1-3], where now

k(L) = exp(-b|g]) , kg(T) = exp(-1Z]) , & =71 buy , (2.43)

and therefore

P Df 2(1), = = [up)s [exp(-bIL]) + BIZI - 1)

b o(t), = r'[ui]A fexp(-1g]) + 12| - 17 ;

2
[“F]A 2n DF/Aw ; (2.44a)

PM: D 2(t), = x(vg)a [1 - exp(-blZ])] ;

Dy 2(t)g = T’ (u3), 11 - exp(-blZI)] ;
[pg]A =0l e,, , (2.44Db)

with b (> 0) a dimensionless quantity, as is . The quantity
Awy is the bandwidth of the modulating (Gauss) noise, cf.
(2.43). Note, also, that

’[u%]A = aé Dp /Aw [“F]G ; r'[pg]A = cé D [“P)G . (2.45)

The quantities (u% P)() are the respective modulation indexes for
’
FM and PM, cf. [1; chapter 14].
Finally, we have for p in (2.3), now with AR = 0,

AwN

p(t) » p(L) = . (2.46)

o for BlGl 5,

AwN

1 - Blal g %-LSI
N
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Putting the above (2.43), (2.44) in (2.42), we now specialize
our results,

1,2 .
Ky(r)A+G 2Ao ko(r) cos(wot) , Wwith ko(O) =1, (2.47)
to the normalized covariance ko(r), respectively, for FM and PM,
and their associated spectra. We have for these carriers

modulated by a sum of Gaussian and Class A noise:

I. FREQUENCY MODULATION

ko () py = exp|-T' (uf], exp(-1a]) + [Z] - 11 - A(2-p)

+ 2o exp(- —5{ug], tex-vleh) + bl2l - 1] (2.48)

with p(t) given by (2.46). Here, % o in (2.42). Since

szoIFM

lim k (T =0 ,
O ( ) FM

there is no dc in ko FM’ and hence all the original carrier power
(~A /2) is distributed into the sideband continuum for this
hlghly nonlinear modulation, as expected [l; section 14.1-2].

The associated intensity spectrum for ko M is defined by

w(‘:’)A""GIFM = J- kO(C)FM COS((:)C) dz. ’ a = AW ’ (2'49)

which is determined by a direct cosine transform of ko(C)FM. See

appendix A.6 ff.
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II. PHASE MODULATION

ko(Z)py = exp|-T" (u3]5 (1 - exp(-1t])1 +2a(1-p) exp(~ £(62],)

- A(2-p) + ap exp(- 2(s2], 11 - exp-bl2IN]]

(2.50)
with p(Z) again given by {2.46). We note that

ko (O)py = 1, (2.51a)

as before; that is, the total (normalized) intensity is unity.
Also

Ko (=) pyy exp[-P’[y%]A - 2A[1 - nvp[- %[uﬁ]A}} : | (2.51p)

this is the fraction of the power remaining in the carrier, so
that

k (0)py = k(®)py = 1 - (2.51b) , (2.51c)
which is the fraction of the power distributed in the sideband
continuum.

The associated intensity spectrum of the sideband continuum
is determined from

-]

(@) psc|pu-cont = | [¥o(Z)pw = Ko(=)py] costar) @ . (2.52)

0

See section 3 ff. for examples and appendix A.5 for the
evaluation methods.
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Finally, in the equivalent Gaussian cases (Gauss noise

modulation of equal intensity and basic spectrum, e.g.,
r'[ 2] > F'[“z) = I/ 2 (1 +T') and k. @+ k
Hr)a Hrln Hra G L’

we see that (2.48), (2.50) reduce to

ko(C')FM-Gauss = exp[—(ﬂ%]A I’ [exp(—bl(l) + blll - 1]/b2] !

[ﬂg]A = (1 + r')(pg]A ; (2.53a)

ko(C) pM_Gauss = exp[-[ﬂg]A r’rr1 - exp(-blcl)]] '

[ﬂg)A = (1 + I")[p%]A , (2.53b)

with spectra obtained as before, from (2.49) and (2.52).
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3. NUMERICAL ILLUSTRATIONS AND DISCUSSION

It is convenient to discuss the general results, namely the
effects of (ZMNL) nonlinear rectifiers on, and modulation by, a
mixture of Gaussian and non-Gaussian noise processes and fields,
from the specific numerical calculations presented here in
figures 3.1 - 3.10. These constitute a representative selection
from the universe of possible parameter states [cf. "Summary of
Normalized Parameters"” and section 2, preceding]. This is done
here on a per-figure basis, as noted below. In each case, the
dc component is removed: only the covariance or continuous
spectrum is calculated. We recall that there are two cases to
distinguish: Case A, r'=t-AR/co, a 2-element array; and Case B,
T'=t=t2-t1, a preformed beam. See fiqure 2.1 and (2.3a).

All spectra shown here are normalized to have area (under the
spectrum level) of unity, i.e., the spectral normalization is
obtained by dividing the spectrum by the value of the associated
covariance at its origin. The normalization of the covariances
themselves is uotained by dividing by the value at ©=0 or AR=0.

I. GAUSS NOISE ALONE

FIGURE 3.1

This fiqure shows the normalized temporal covariance (5§=0)
for both the input and output of a ZMNL half-wave v-th law (v20)
detector, when v = 0,1,2 and when only Gaussian noise (A=0) is
applied to these nonlinear devices. These curves are based on
(2.11) with (2.7a), where Y, = kg (2.96), with AGG = ch/ﬁ =5
here. The normalization is with respect to the covariance
maximum; e.g., the normalized covariance shown in fiqure 3.1 is
obtained from [(2.11)/(2.11)t=0}], fR=0. These results apply for
both cases A,B of figure 2.1, where now t’'=f, since 5§=0, cf.

(2.3a) and remarks.
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As expected (cf. [1; chapter 13}), the general nonlinearity
(2.6), v20, contracts the covariance, which is equivalent to
spreading the spectrum vis-a-vis the input , cf. figure 3.2,
below. Moreover, the greater the distortion (v=0,2), usually the
greater are these effects. [See appendix A.l.]

FIGURE 3.2

This is the same situation as shown in figure 3.1, except
that the normalized intensity (frequency) spectrum is calculated
now [cf. section 2.2-5, Case II, (2.39)] with ﬁy(o,f), (2.11),
used in (2.39). Observe the greatly broadened spectra,
particularly at the low spectral levels, where the greater spread
occurs for the "super-clipper", v=0, cf. remarks, figqure 3.1;
also, appendix A.3.

FIGURE 3.3

For the same purely Gaussian field above, cf. (2.11) and
(2.96), with ©,t’=0, the spatial covariince is calculated, with
parameters AL/“G = 58, using (2.11) ai\before. The normalization
is with respect to the covariance at AR=0. Again, one observes
the same kind of contraction in the covariance as noted in figure
3.1. [See appendix A.2.]

FIGURE 3.4

This is the wavenumber analogue of the frequency spectrum of
figure 3.2, now with t',t=0, and is obtained from (2.35a,b) with
AL/AG = 5%. The rectification operation similarly spreads the
wavenumber spectrum, with the greatest distortion (v=0) yielding
the greatest wavenumber spread, as expected from the
corresponding contraction of the associated covariance, cf.
figure 3.3 above. [See appendix A.4.]
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CLASS A PLUS GAUSS NOISE

FIGURE 3.5

The temporal covariance here is given by the general result
(2.7), with the associated relations (2.7), (2.8), (2.9), wherein
5§=0, so that f=f'=t2-t1, as before, and where Bv a’ (2.7a), is
now given analytically by (2.10) for v = 0,1,2. Here, the
parameter values are A&G = AwG/B = 55, as before, now with A=0.2,
FA=10'3, AwL/B = A&L = 1 for the Class A non-Gaussian noise
component, typically.

Again, for the super-clipper (v=0), the contraction in the
normalized covariance is greatest, cf. figure 3.1. But the
contribution of the comparatively strong non-Gaussian component
exaggerates this effect. [See appendix A.1l.)

FIGURE 3.6

The corresponding intensity (frequency) spectrum (5§=0),
obtained from (2.7) in (2.39), however, shows a fine-structure
not exhibited wnen Gauss noise alone (A=0) is applied to these
ZMNL devices. The spectral levels for the case v=0, (A=0) and
(A>0), cf. figure 3.2 with figure 3.6, are approximately the
same, whereas the other inputs, cases v=1,2, are much elevated as
f becomes larger, again due to the presence of the structured
Class A noise, when BTS £1, cf. (2.3): on the average, the
original Class A "signals" are of comparatively short duration,
or spectrally wide to begin with, so that clipping further
spreads the spectrum. [See appendix A.3.])

FIGURE 3.7

The spatial covariance when Class A noise is added to the
Gaussian input shows analogous behavior, cf. figures 3.3 and 3.5:
the covariance is compressed vis-3a-vis the input, but more so
than in the Gauss-alone situations. Again, (2.7) - (2.10) are
employed. [See appendix A.2.]
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FIGURE 3.8

The corresponding wavenumber (intensity) spectrum with Class
A noise and the Gaussian component, obtained from (2.7) - (2.10)
in (2.39), is shown here. Comparison with figure 3.4 indicates a
broader spectral input, due to the non-Gaussian component, but a
relatively narrower output, although the latter is still
noticeably spread vis-a-vis the original input. [See appendix
A.4.)

FIGURE 3.9

Finally, we consider the angle-modulation cases described in
section 2.2-6 above, where weak to strong angle modulations
(4 ~ 1 to 50) by Class A noise, with a weak (P’=10'3) Gaussian
modulation component, is employed.

For phase modulation by non-Gaussian noise, based on (2.50)
with (2.44b), (2.45), (2.46), the resulting normalized intensity
(frequency) spectra are obtained by applying (2.50) to (2.52),
where £ = @&/2n; @ = (m-wo)/AwN, cf. (2.49). Note the "spike" at
f ~ 0.1, followed by a variety of sidelobes which rise as the
phase modulation index Hp increases. The spike is now bounded at
f = 0.8, at the -10 dB level, when Hp = 50. As expected, the
larger indexes (Hp) produce broader spectra. [See appendix A.S5.)

FIGURE 3.10

For frequency modulation by non-Gaussian noise, from (2.48)
with (2.49) and (2.44a), the corresponding intensity (frequency)
spectra again exhibit a continuous spike (f < 0.1). With small
modulation indexes (Hg) the spectra are less broad than for the
larger indexes, as expected. The non-Gaussian noise component
dominates the spectrum here. [See appendix A.6.]
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EXTENSIONS

Other situations where the second-order Class A probability
density functions may be applied are noted in [2] and [3]. We
list some of the extensions of the analysis to the following
"classical" problems:
1) The inclusion of representative signals, with Gauss and
non-Gauss (Class A) noise, in the problems already treated
here (section 2);

2) The case of the full-wave square-law rectifier, with both
Class A and B noise, as well as Gauss noise;

3) The extension of 2) to include general broadband and

narrowband signals;

4) The calculation of signal-to-noise ratios and deflection

criteria, cf. [1l; section 5.3-4].

5) Covariances and spectra for ZMNL system outputs, with

signals as well as non-Gaussian noise inputs;

6) The rb6le of the electromagnetic (or acoustic) interference

(EMI or acl) scenario, cf. [5; section 2B,5];
7) Evaluation of the large (FM,PM) indexes, or asymptotically
Gaussiar cases, cf. [12].

Further opportunities to extend the classical theory (2],{31],
now with non-Gaussian noise inputs, are evident from the examples
and methods described in [1; chapters 5, 12 - 16], for instance.
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FIGURE 3.1 TEMPORAL COVARIANCE (FOR AR=0); GAUSS NOISE ONLY;
CF. (2.11) WITH (2.7a), (2.9b), AND APPENDIX A.l
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FIGURE 3.3 SPATIAL COVARIANCE (FOR ¢',t=0); GAUSS
NOISE ONLY; CF. (2.11), (2.7b), AND APPENDIX A.2
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FIGURE 3.5 TEMPORAL COVARIANCE (FOR AR=0); CLASS A
AND GAUSS NOISE; CF. (2.7)-(2.9) AND APPENDIX A.l
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PART II. MATHEMATICAL AND COMPUTATIONAL PROCEDURES
4. SOME PROPERTIES OF THE COVARIANCE FUNCTION

In this section, we collect some useful relations for the
covariance and auxiliary functions encountered in the numerical
evaluation. These are necessary for rapid computation of the
multiple series involved here and also serve as checks on the

numerical procedures employed.
4.1 SIMPLIFICATION AND EVALUATION OF BV(Y)

The function B, (Y) is defined by the following combination of
hypergeometric functions:

2 v v, 1, .2
B, () = % $o-3 hv?) .

) #(-
, 1 5 : %; Yz] for Y2 <1 . (4.1)

<

v + 1
2
2(v 1 - v
+ 27T (2 + 1) Y F[ 5
For the upper F function in (4.1), we have [1; (A.1.39b)]
v =0, F[O, 0; 7 Yz] =1 ;

k
v=1], F[- %, - %; %; Y2] = Y arcsin(Y) + [1 - Y2] ;

v =2, F[-l, -1; 3 Y2] =1+ 2v2 ; (4.2)

where arcsin is the principal value inverse sine function. On

the other hand, for the latter F function in (4.1), we have
[l1; (A.1.39a) and (A.1.39c)]
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- 1 1 3 2] _ arcsin(Y) .,
V"Ol F[212I2I{]— Y .

b 2
_ 1 1 3,,2)_3 2 1 + 2Y .
v = 2, F[— 5 AL Y ] = 4[1 - Y ] + v arcsin(Y). (4.3)

When these quantities are substituted in the above expression
for Bv(Y), we find the fcllcowing relatively simple relations:

BO(Y) =n + 2 arcsin(Y) ,
_ . 2 % 1
Bl(Y) = Y arcsin(Y) + [1 - Y ] + 7Y p
_ (1 2) (m . 3 2 % 4
BZ(Y) = [5 + Y ][5 + arcs1n(Y)] + EY[I - Y ] . (4.4)

These three quantities can be computed simultaneously by the
following very compact computer coding in BASIC:

Y2=Y»*Y

Sg=SQR(1.-Y2)

T=ASN(Y)+1.5707963267948966

BO=T+T

Bl=Y*T+Sq

B2=(.5+Y2)*T+1.5*Y*Sq (4.5)

Thus, the rather formidable expression, above, for B,(Y) can be
evaluated by the use of just one square root and one arcsin when
v=20,1, 2.

The following limiting values, which are obvious, are needed

for various special cases:
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BO(O) =n , Bo(l) = 2n ,

B.(0) =1, B,(1) =n ,

B2(0) = n/4 , B,(1) = 3n/2 ,

B,(0) =1, By(1) = 151/4 ,

B4(0) = 9n/16 , B4(1) = 105n/8 . (4.6)

These are special cases of

B (0) = r2[3—§—1] , (4.7)

DO s

B (1) = 2 't F[v + ] ) (4.8)
the latter following from [10; (15.1.20)].

4.2 LIMITING VALUES OF THE COVARIANCE FUNCTION

The covariance function at normalized separation AR and
delay T is given by (2.7) as

@ ] m, +m

1 72
A A~ A(l -
H(£R, %) = exp[-A(2-p)] > [A( mllpl)“JZ!
m1=0 m2=0
© jApLE n + m v/2 n + m, v/2
’ ’
x oy = + T = + T, B, (Y) . (4.9)
n=0
where
p = p(t) = max{0, 1 - lfll ’ (4.10)
n
=k, + T k
AL A G
Y = Y(ml,mz,n) =TT m L o+ m, L v (4.11)
———t ’
{' At ré] [ F rA]
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dw. )2
LJ f2] , (4.12)

2
f2] . (4.13)

(8,12
IS

kG = kG(Kh,f) = exp|-

kG can be replaced by other functional

The function B, (Y) has been
=0, 1, 2.

The functions p, kL'

dependencies, if desired.
considered earlier and considerably simplified for v

4.3 VALUE AT INFINITY

As AR or © = o, then
p 2 0, kL > 0, kG >0, Y->0. (4.14)
(If |t| remains less than 1 as AR tends to infinity, then p does
not approach zero; this nuance has been discussed elsewhere in

it follows that

this report.) Then,
m, v/2 m, v/2
> exp(-2A) E E , A + I'A A + I‘A BV(O)
—0 m, —0

= A" (m v/2 2

= Bv(O) exp(-A) = [— + A] ' (4.15)
m=0

= 0 term.

because the sum on n can be terminated with the n

The sum on m can be effected in closed form, for v = 0, 2, ¢,

etc., by using the following results:

= m
(4.16)

2:: + = exp(A) ,

]
=0

>

E]

46




TR 8887
: é—!-m= (mf 1)! = A exp(A) , (4.17)
m=0 m=
] m © n
A 2 A
me ™= w-1n7T (m-1+1)
m=0 mn=1
A A 2
=§ m -2 ' T —Ty7T = (A" + A) exp(a) . (4.18)
m=2 m=1
There follows
n for v = 0)
A . 2
My(°) = ‘z[l + PA] for v = 2 . (4.19)
ELY P [1 + r']2]2 for v = 4
16 |A A )

The case for v = 1 requires a numerical summation, once A and
PA are specified. When these limiting values are subtracted from
the correlation function, we obtain the covariance function.
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4.4 VALUE AT THE ORIGIN

For &§ =0, T = 0, then
p =1, k., =1, k. =1, (4.20)

and

~ 2 n Y
My(0,0) = exp(-A) E %T [% + ri] Bv(l) ’ (4.21)
n=0

because the sums on m; and m, can be terminated with the zero
terms, thereby also leading to Y = 1.

The sum on n can be accomplished in closed form, for
v=20,1, 2, etc., by using results given earlier. There follows

(2K for v = 0)
M (0,0 [1+r'] £ =1} 4.22)
y‘ ,0) n A or v = . (4.
é l ']2 =
‘2“[A + [1 + I‘A ] for v 21
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PART III. APPENDICES AND PROGRAMS

APPENDIX A.l — EVALUATION OF COVARIANCE FUNCTION
FOR ZERO SEPARATION (4R = 0)

A program for the numerical evaluation of covariance
ﬁy(ék,f) for AR = 0 is contained in this appendix. Inputs
i (B /B)2, (Bwg/B)2, 8(), N(E),
in lines 20 - 70. Since we are generally interested in values of
A less than 1, the series for ﬁy in (4.9) will not have to be
taken to very large values of m,, m,, n; accordingly, the values
of {Ak/k!] are tabulated once in lines 260 - 300 with a tolerance
of 1E-10 set in line 80.

The values of the covariance at infinity, as given by (4.19),
are computed and subtracted in lines 220 - 240 and 400 - 420;
this is in anticipation of taking a Fourier transform of a
covariance function which decays to zero for large arguments AR.

The functions B, (Y) and ﬁy(ﬂh,f) are available in the two
subroutines starting at lines 1010 and 1120, respectively. The
latter subroutine actually calculates the covariance at general
nonzero values of both AR and ©, although we only employ it for
AR = 0 in this appendix; see lines 10 and 380. Also, for E§ = 0,

required of the user are A,

the parameter Lg2 = (AL/AG)2 is not relevant and, hence, is
entered as zero in line 380.

The exponential Gaussian forms for kL and kG are used in
lines 1200 and 1210, while the triangular form for p is entered
in line 1240. Any of these can be replaced, if desired, by forms
more appropriate to the user.

The program is written in BASIC for the Hewlett Packard 9000
Computer Model 520. The designation DOUBLE denotes integer
variables, not double precision. The output from the program is
stored in data files AOTO, AOT1, AOT2, for v =0, 1, 2,
respectively.
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kc=8. ! DelR~

A=,2 ! R(subA>

Gp=.001 ! GAMMA~“ (subHA>

Hib2=1. ' (DelW(subl)/Betad~2
Hgb2=25. ! (DellCsubG)sBetad~2
Dtc=.81 ' INCREMENT IN Tau~
MHtc=2898 !  HUMBER OF Tau~ YRALUES

Tolerance=1,E-10
COM AFCB:140),C(B:188>,Sq(0:180)

COM DOUEBLE J | INTEGER

DIN Kag(208)>,Tc(B:208)>,FOC(0:200>,F1(0:2060),F2C0:200)
DOUBLE Htc,K ! INTEGERS

FOR K=8 TO Ntc

Tc=K#Dtc ' Tau~
Rho=MA¥((B,,1.-AESC(Tc)) ! Rho

T2=.5%Tc*Tc
K1=EXP(-W1b2%T2)>
Yg=EY¥P (~Hgh2+T2)

Kag(K)=(Rho*#K1+Gp*Kg)- (1.+Gp> ! INPUT COVYREIAHCE
HEXT K

Al=1.-A ! A>3 REQUIRED

Feinf=PI

Flinf=FNF1inf(A,Gp>
FZinf=.25%P1%C1,+Gp)*C1,+Gp)

ARfCBY=1.,

FOR K=1 TO 40

J=K

AfCED=T=A¢{¥-1)*%A~K t A~K K1
IF T<{Tcoclerance THEN 320

HEXT K

PRIMT "40 TERMS IMN Af(x)>"
FOR K=8 TO J%2
C(K>=T=K#fA1+Gp
SqCK>=1./SARCT)

HEXT K
FOR K=8 TO Htc
Tc(K>=Tc=K#*#Dtc ! Tau~

CALL Myc(Rc,T¢c,R,Gp,H1b2,Hgb2,08.,FBC(K),F1(K),F2CK)>
NEXT K

MAT FB=FO-C(FBinf>

MAT F1=F1-(Flinf)

MAT F2=F2-(F2inf)

MAT FB=F@-(FBC(B>>

MAT F1=F1/C(F1CB)>)

MAT F2=F2/(F2¢(8)>)>

PRIHT "INFINITY:“;F@inf;Flinf;F2inf

PRIHT "MIHIMAR: “"3MIHCFOC*))sMHIHCFLIC(%#203MINCF2¢%))
PRINT "AT Htc: ";FOCHtc);FICNtcI§F2C(Htc)

CREATE DATA "AIT1",8

ASSIGH #1 TO "AIT1I"

PRINT #1j3Kag(¥)

CREATE DATA "AOTO",8

ASSIGH #1 TO "RCTB"

PRINT #1;FOC%)

CREATE DATA “AOT1",8
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1Y) RSSIGH #1 TO "“AOTLI"

570 PRINT #1;F1(%)

5809 CRERATE DRTH "“ROTZ2",8

59@ ASSIGH #1 TO “ROTZ2"

€00 PRINT #1;F2¢%)

€10 ASSIGH #1 TO *

€20 Tcmax=Dtc#Htc

€30 GIHIT 200-260

6408 PLOTTER IS 505, "HPGL"

€59 PRIHTER IS 505

660 LIMIT PLOTTER S505,9,200,0,260
670 VIEWPORT 22,85,19,122

68a WINDOW 6.,1.,0.,1.

6906 PRINT "vs§*

7008 GRID .25,.25

716 PRINT "vs36"

720 PLOT Tc(*),Kag(*)

730 FPEHUP

7408 PLOT Tc(*)>,FB(*)

750 PEMUP

760 PLOT Tcd(*>,Fl(%)

770 PEHUP

780 PLOT Tc(x),F2¢%)

790 PENUP

866 PRAUSE

810 PRIHTER IS CRT

820 PLOTTER S0S5 IS TERMIMATED
838 END

840 !

850 DEF FNF1inf<(A,Gp> I for v(=nu) = |
860 Tol=1.E-18

870 Ag=A#*Gp

&80 T=1.

890 S=SAR(1,+Ag>

980 FOR M=2 TO 100

910 T=T#A/MN

920 P=T#SQR(M+AQ)

930 S=S+P

9409 IF P<S%#Tol THEN 970

9508 MEXT M

960 PRIMT "100 TERMS IH FNF1linf"
978 T=Gp+A*S*%#S+2, *SAR(AQI *S

986 RETURH EXNP(-2.%A)>*T

990 FHEND

1000 !

1910 SUB Bnuc¢vY,Bo,B1,B2> i Bu(Y) for wvw=8,1,2
1820 IF Y>1. THEHW PRINT "Y = 1 +"3¥Y-1,
18306 IF ¥>1. THEH Y=1.

1040 Y2=Y*Y

1956 Sqg=8SAR(1.-Y2)>

1060 T=ASH{(Y)+1.570879€32€79489€¢€
1670 BO=T+T

1980 B1=Y#*#T+Sq

1090 B2=C(.5+V2)%T+1.52Y%Sq

1100 SUEBEND

1110 !
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1130
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1210
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12306
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1296
1300
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1328
1330
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14306
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1578
1580
15960
1600
1610
1620
1€30
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SUE Muc(Rc,Tc,A,Gp,HIb2,HgbZ,Lg2,80,51,52)
COM RAf(#),C(%),Sqi)

cOM DOUBLE J ! IHTEGER
ALLOCATE ApcB:Jy,Aplda:J)

DIOUBLE K,M1,M2,H,K1,K2 !  INTEGERS
H1=1.~ R ! A>6 REQUIRED
T2=,5%Tc#Tc

R2=Rc*Rc

K1=EXP(-R2-W1b2*T2>
Kg=EXP(-Lg2#R2-kgb2*T2)
Ak=A1*K1

Gk=Gp*Kg
Rho=MAX(®B.,1.-ABS(TcI)> !  Rho
Rhol=1.-Rho
Ap(BY=Apl1(B>=Pk=Pkl=1,
FOR K=1 TO J
Pk=Pk*Rho
Pki=Pk1*Rbhot

T=Af (K>

Ap(K>=T#*Pk
Ap1(K>=TxPk1

HEXT K
SOm1=S1mi=S2m1=0.
FOR M1=0 TO J
SOm2=S1m2=52m2=0.
FOR M2=8 TO J
S@n=S1n=S2n=0.

FOR H=8 TO J

Ki=H+M1

K2=H+M2

T=Ap (N>
P=CC(K1>#C(K2)>
Y=(H*%Ak +GKk ) *Sq(K1)>*Sq(K2)>
CALL BnucY,B8,B1,B2)
SAn=SOn+T*EO
Sin=SIn+T#SAR(PI*B1
S2n=S2n+T*P*B2

HEXT N

T2=Rpl (M2>
SOm2=50m2+T2#SOnNn
S1m2=S1m2+T2%S1n
S2m2=S2m2+T2%#S2n
HEXT M2

Ti=Api (M
SOmi=S0m1+T1*SOm2
Stm1=S1ml+T1#S1im2
S$2m1=82mi+T1#S2m2
HEXT M1
T=EXP(~-A¥(2.-Rho>>
so=T+*Son1

S1=T*S1ml

s2=T#S2m1

SUBEHND
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APPENDIX A.2 — EVALUATION OF COVARIANCE FUNCTION
FOR ZERO DELAY (f,t’ = 0)

A program for the numerical evaluation of covariance
ﬁy(&h,f) for t,f' = 0 is contained in this appendix. Inputs
required of the user are A, PA, (AL/AG)Z, 6(&%), N(Eﬁ), in lines
20 - 60. The tolerance for terminating the triple infinite sums
is set at 1E-15 in line 70. The output from the program is
stored in data files AORO, AOR1l, AOR2, for v =0, 1, 2,
respectively. Other relevant comments are made in appendix A.1l.

The limit of ﬁy at AR = = (when T = 0) is given by the closed

form results

N for v = 0]
~

!![1 + + ’]2] = 2

e [1 PA for v ‘

These values have been subtracted from ﬁy so that we can Bessel

tcansform a function which tends to zero as Eﬁ 9 o,

108 Tc=@. ! Tau»

20 A=.2 ! AdsubA>

30 Gp=.001 ! GAMMA’ (subR)>

40 Lg2=5. ! {DellL /DelG)~2

56 Drc=.,085 ! INCREMENT IN DelR~
(%) Hrc=908 ! HUMBER OF DelR~ VYALUES
70 Tolerance=1.E-15

g0 COM Af(B:48)>,C(N:80)>,5¢(6:80)>

Sa COM DOUBLE J ! INTEGER

160 DIM Rc(B:900),Kag(0:90@),FB(0:900,,F1(B:900),F2(G:9083>
1106 DOUBLE Hrc,K ! IMTEGERS

1206 Al1=1.7A ! #>0 REQUIRED

130 Foinf=Pl ' LIMITS FOR
140 Flinf=1.+Gp I Rc=infinity
150 F2int=,25%#P1#((1.+Gpr*(1.+GpO+A1> ! AHD Tc=@a
160 Af¢BO=1,

170 FOR K=1 TO 40

180 J=K

1906 AFCKY=T=Af CK=-1)*%A/K POARAKZKY
200 IF T<Tolerance THEM 230
210 HEXT K
2260 PRINT "40 TERMS IH Af ()"
230 FOR K=0 TO J=2
240 CK>=T=K#A1+Gp
250 Sq(Ky=1,/SOR(T>
260 NEXT K
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276
280
2980
3vb
310
320
338
340
350
360
370
380
390
480
410
4208
438
4409
450
460
4706
480
490
500
518
Sze
530
549
558
560
S7e
580
596
608
6106
€26
€38
640
€50
6c@
670
€80
630
Iq-1%
71e
rze
730
740
750
760
7’70
7806
790
800
gle
8206
900
91e
9206
938
1440
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FOR K=0 TO Hrc
Rc (K>=Rc=K#*Drc ' DelR~
R2=Rc *Rc¢
K1=EXP(-R2>
Kg=ERP{(-Lg2%R2)>
Rho=MAX(B.,1.-ABS(Tc > I Rho
Kag(K)=(Rho*K1+Gp*Kg>/(1.+Gp> i INPUT COVARIAHCE
CALL Myc(Rc,Tc,H,Gp,8.,8.,Lg2,FOCK),F1C(K>,F2C(K>)
NEXT K
MAT FB=FB-(FBinf>
MAT Fi=F1-(Flinf
MAT F2=F2-C(F2inf>
MAT FB=FB-/(FB(B>)
MAT F1=F1/C(F1(B)>>
MAT F2=F2/(F2CB)>>
PRINT "INFINITY:";FBinf;Flinf;F2inf
PRIHT "MINIMA: ";MINCFOC*D)sMINCF1C*) )3 MINCF2¢%))
PRIMT "AT Hrcs "sFOCHrc) s F1{Hrc);F2(Hre)
CREATE DATR “"ARIR1",33
HSSIGH #1 TO "RIRY"
PRIMNT #1j3Kagi(#*)
CRERATE DATA "AOR®",33
ASSIGH #1 TO “"ROURG"
PRIWT #1;FB(*)>
CREATE DATA "AOR1",33
RSSIGMN #1 TO "ARORI"
PRIHT #1;F1(%5
CREATE DATA "ACOR2",33
ASSIGN #1 TO "ADR2"
PRINT #13;F2(%)
ASSIGH #i TO =*
Rcmax=Drc*Nrc
GIMIT 2006-/260
PLOTTER IS 585, "HPGL"
PRIHTER IS S65
LIMIT PLOTTER 585,0,260,0,260
VIEWPORT 22,85,19,122
WIHDOW ©6.,3,,0.,1.
PRINWT "wsS"
GRID .5,.25
PRINT "vs3é"
PLOT Rc(*)>,Kag(*>
PEMNUP
PLOT Rc(*),FOC(*)
PEHUP
PLOT Rc(#)>,F1(%)
PENUP
PLOT Rc(#>,F2(%)
PENUP
PAUSE
PRINTER 1S CRT
PLOTTER S©8S IS TERMINATED
EHD
]
SUB Bnu(Y,BO,B1,EB2) ! BudY) for vu=0,1,2
! SEE APPEHWHDIX A.1
SUBEND
|
SUB Myc(Rc,Tc,A,Gp,HIb2,Hgb2,Lg2,58,51,52)>
! SEE APPENDIX A.1
SUBEND
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APPENDIX A.3 — EVALUATION OF TEMPORAL INTENSITY
SPECTRUM FOR ZERO SEPARATION (4R = 0)

A program for the numerical evaluation of the Fourier
transform of covariance ﬁY(O,f) - ﬁy(m) is contained in this
appendix. Inputs required of the user are listed in lines
10 - 30. The data input, AOTO or AOT1 or AOT2, as generated by
means of the program in appendix A.1l, is injected by means of
lines 410, 600, and 790.

In order to keep the FFT (fast Fourier transform) size, N in
lines 30 and 320, at reasonable values, the data sequence is
collapsed, without any loss of accuracy, according to the method
given in [8; pages 7 - 8] and [9; pages 13 - 16]. The
integration rule documented here is the trapezoidal rule; this
nrocedure is very accurate and efficient and is recommended for

numerical Fourier transforms.

10 Htc=200 !  HUMBER OF Tau~ YALUES
20 Dtc=.081 I ITHCREMENT IH Tau~

36 H=1024 ! SIZE OF FFT; H > Ntc REQUIRED
40 DOUBLE Mtc,H,N4,H2,H: ' INTEGERS

Se Nd=H-4

60 H2=N-2

70 REDIM Cos(@:HN4)>,X(0:N-1),YC@:H-1)

80 DIM Cos(256),KC1823>,Y(10823)>,A(2088)

96 T=2.%#PI/H

160 FOR Hs=8 TO N4

116 Cos (Hs)=COS(T#*#Hs) ! QUARTER-COSIME TAELE IH Coz (x>
120 NEXT Hs

130 GINIT 260,260

140 FLOTTEKR 1S S@S, "HPGL"

150 PRINTER IS 585

160 LIMIT PLOTTER 505,0,200,0,260

176 VIEWPORT 22,85,19,122

180 WINDOW @,H2,-5,1

19@ PRINT "v§5"
200 GRID N-10,1
210 PRINT "vS3&"
22@ ASSIGH #1 TO "ARITL®
230 RERD #1;RA(*)
240 MAT X=C(8.>
250 MAT ¥=(6.)>

268 X(@>=,5%#AC1D)
270 FOR He=1 TJ Htc-1
286 K(Hg)=AHs)

230 HEXT Hs

300 R(NtcH>=,5#AC(MHtc)
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310
320
338
340
350
360
37e
380
390
499
410
420
438
440
450
460
470
480
490
So6
5106
526
530
540
556
See
570
Ss8e
596
600
610
€20
€30
640
650
€60
670
6806
€90
7ee
710
rz20
730
740
rse
760
7?70
780
?’90
800
810
§20
8306
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MAT K=X*(Dtcxd,>
CALL Fftl14(N,Coz (%), ¥ (*),Y (%))
FOR Hs=0 TO MHZ
Ar=X(Hs)

IF Ar>8. THEW 380
PENUP

GOTO 390

PLOT Hs,LGTCAr>
HERXT Ms

FEHUP

ASSIGHN #1 TO "AOTB"
REARD #1;RAC*)

MART X=(@.)

MAT ¥=(8.>
R(BY=.5*ACB

FOR Ns=1 TO Mtc-1
R(H=)>=AC(Hs)>

HEXT HNs
RCNtcd=,.5*%ACHL D
MAT X=X*(Dtc#*4.,)>
CALL Fft14(H,Cos (%), K(*),Y(%))
FOR Hs=6 TO N2
Ar=X(Hs>

IF Ar>8. THEH Sv6
PENUP

GOTO 586

PLOT Hs,LGT<C(Ar>
NEXT Hs

PEHUP

ASSIGH #1 TO "ROT1"®
READ #1;A(*>

MAT X=(8.)

MAT Y=<(@8.)
X(B>=.5%ACB>

FOR Ns=1 TO Htc-1
X{Ns>=AC(Hs>

MEXT Hs
R(NHtc)>=,.5#A(Ntc?
MAT X=X*#(Dtc#4.)
CALL Fft14(H,Cos(¥),X(*)>,Y(*))
FOR Hs=6 TO H2
Ar=X(Ns>

IF Ar>6. THEN 7€0
PENUP

GOTO 77e

PLOT Hs,LGTC(Ar>
MEXT HNs

PEHUP

ASSIGH #1 TO "ROTZ2"
READ #1;AC*)

MAT A=A-C(ACB)>

MAT “=(8,.>

MAT Y¥=C(@,>
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848 #(BOd=,5+A(0)D

856 FOR HNs=1 TO Htc-1

85608 X(Hz>=R(Hs)D

870 HEXT Hs

£80 R{Mtec)=.5%AHL O

890 MAT X=X%(Dtc#*4,)

980 CALL Fft1d4(H,Cos (%), X(*¥),Y (%))
918 FOR Ns=6 TO M2

920 Ar=X(Hs)>

930 IF Ar>8. THEN 960

940 PEHUP

958 GOTO 976

960 PLOT He,LGTC(Ar>

g97a NERT Ns

980 PENUP

990 PRAUSE

10606 EHD

19018 !

1629 SUE Fft14(DOUELE N,RERAL Cos(#)>,X(%),Y(%)>) | H{(=2~14=16384; 6 SUES
10309 DOUBLE Log2n,M1,H2,H3,H4,J,K V' INTEGERS < 231 = 2,147,483,648
1940 DOUEBLE I1,12,13,14,15,16,17,18,19,110,111,112,113,114,LC0:13>
18506 IF H=1 THEH SUBREXIT

1069 IF H>2 THEN 1149

1870 AR=XC(BY+X(L1 >

18293 K1Hr=X@)=-X(1)

10906 ®(BI)=A

11806 A=YC(BY+Y (1D

1110 Y1 =YY@y -yY1)

1126 Y@r=R

11306 SUBEXIT

1140 A=LOGC(H> /LOGC(2.)

1150 Log2n=A

1160 IF ABS(A-Log2n><1.E-8 THEN 1190
1176 PRINT "H ="3;N;"IS HOT A POMER OF 2; DISALLOMWED."
1182 SRUSE

1196 Hi=H-/4

1200 H2=H1+1

1210 H3=H2+1

1220 N4=H3+M1

1230 FOR I1=1 TO LogZ2n

1240 12=2~¢Log2n-11>

1250 13=2%]2

1260 I4=H/13

1276 FOR 1S5=1 TO 12

1280 1€=CIS-1>%14+1

1290 IF 16<=N2 THEN 13306

1300 Al=-Cos(N4-16-1)

1310 A2=-Cos(l&-M1-1>

1320 GOTO 135@

1330 A1=Cos<I6-1>

1340 A2=-Cos(M3-16-1)

1350 FOR I17=06 TO HN-I13 STEP I3

1360 I8=17+15-1

137a 19=18+1]12

13860 TI=X(I8)

139@ Te=xC19
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1400
1410
14209
1430
1440
1450
14608
1470
1480
1496
1500
1510
S2e
1530
1540
1558
15606
1570
1580
1598
1600
1610
1628
1630
16408
1650
1660
1670
16806
1690
1708
1710
1720
1730
1740
1750
1760
1770
17806
1790
1800
1810
1828
1836
1840
1850
1860
1872
1880
1890
1900
1910
1920
1930
1940
1956

T3=v<(I8>

Td=vCI9)

A3=T1-T2

A4=T3-T4
RCI8I=T1+T2
YCI8Y=T3+T4
XCI9)>=A1*A3-A2*A4
Y(I9)=R1*#A4+A2*A3
HEXT 17

HERT 'S

NEXT I1
It=Log2n+1

FOR I2=1 TO 14
LCIz2=-1)=1

IF 12>Lag2n THEHW 1560
LCI2-13=2~C11-12D
HEXT 12

K=8

FOR It=1 TO LC13>

TR B887

FOR I2=11 TO L<{12> STEP LC(13>
FOR I3=12 TO L(11> STEP L<(12)>
FOR I14=I3 TO LC18> STEP L(11)

FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR

15=1I4
16=15
17=186
18=17
19=18

T0
10
T0
T0

L(9)> STEP L<C(18>
L3> STEP L(9)
LC?)> STEP L(8)
L{8)> STEP L(7)>
L{S) STEP L(6)

116=12 T0 L(4)> STEP L(S5)
I11=1i0
I12=111
I113=112
I14=113

TO LC(3> STEP L4
TO L<2> STEP L(3>
TO LC1)> STEP L<(2>
TO LC(B> STEP L(1D

J=T114-1
IF K>J THEN 18086
A=XCK)D
XKI=XCTD
X(JI>=R
A=Y (K>
YK=Y (D
Y(JI>=R
K=K+1
HEXT 114
HEXT 113
NEXT I12
MEXT 111
HEXT 110
HEXT I9
MEXT 18
NEXT 17
NEXT 16
MEXT 15
HEXT 14
HEXT 13
HEXT 12
HEXT 11
SUBEHND
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APPENDIX A.4 — EVALUATION OF WAVENUMBER INTENSITY
SPECTRUM FOR ZERO DELAY (t,Tt’ = 0)

A program for the numerical evaluation of the zeroth-order
Bessel transform of covariance ﬁy(&h,O) - ﬁy(w) is contained in
this appendix. Inputs required of the user are listed in lines
10 - 40 and are coupled to appendix A.2, where the data input,
AORO or AOR1 or AOR2, was generated. The numerical Bessel
transform is accomplished by means of Simpson’s rule with end
correction [11; pages 414 - 418], and is exceedingly accurate for
the small increment, .005, in AR employed in line 30.

10 Dkc=.4 | IMCREMEHT IH k~

206 Hkc=200 I HUMBER OF k~ VALUES
30 Dre=.005 ! IHCREMEMT IH DelR~
40 Hrc=900 ! HUMBER OF DelR~ VALUES
50 DOUBLE Hrc,Hkc,I,Ns ! IHNTEGERS

€0 REDIM CCB:Hrc)

rd) REDIM Wi(B:Nkcr HO(B:Hke) ,W1COt keI, U2CO: Hke )
80 DIM C(968)>,Hi(200),H8(208)>,K1{280>,H2(2060)

90 ASSIGN #1 TO0 “"AIRL"

1606 RERD #1;C(%)>

110 FOR I=0 TO Hkc

128 Kc=1%*Dkc¢ ! k~

130 T=Kc*Drc

140 Se=So0=0.

1586 FOR Ms=1 TO Hrc-1 STEP 2

168 So=So+Hs=*FHIJo(T*Hs)>*C {Hs)

170 HEXT Ns

180 FOR Hsg=2 TO Hrc-2 STEP 2

190 Se=Se+Ns*¥FHIo(T#Hes)*#C(Hs)
206 HEXT HMs
219 HIiCI>=C(B>+16,.%S0+14, *Se
220 HEXT 1
2386 MAT WizHi*(Drc*Drc*x2.*P1/15.)
240 ASSIGH #1 TO "AGRO"
250 READ #1;C(*)
260 FOR I=0 TO Nkc
278 Ke=1#%#Dkec
280 T=Kc*Drc
290 Se=50=0.
300 FOR Ms=1 TO Nrc-1 STEP 2
310 So=So+MHz*FHIo(T*MHz)*C(He)D
320 HEXT Hs

330 FOR Mz=2 TU Hrc-2 STEP 2
340 Se=Se+MHz*FHIo(T*Hs)*C(Hz)
350 HEXT Hs
360 HB<lI>=C(B)+1€,%So+14, %S¢
370 NEXT 1
380 MAT WO=WHO*(Drc*Drc*2,%P1/135.)
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390 ASSIGH #1 TO "AOR1'

400 READ #1;C(#>

410 FOR 1=8 TO Hkc

420 Kc=1#Dkc

430 T=Kc*¥Drc

44@ Se=S0=6,

450 FOR Hs=1 TO Hrc-1 STEP 2
450 So=So+Hz#FHJo(T*Hs ) *C(He)
470 HE®T Ms

480 FOR M=s=2 TO Hrc-2 STEP 2
498 Se=Se+Hs*FHIo(T*#MHe)*C(Hsz)
560 HEXKT Hs

Sto W1C<I>=C(B>+1¢E,%Co0+14, %S¢
520 HEXT 1

530 MAT W1=W1#(Drc*Drc*x2,*PI/15.)
549 RSSIGH #1 TO "AORZ"

S50 RERAD #1;C(*)

560 ASSIGH #1 TO =*

S70 FOR I=0 TO Hkc

588 Kc=1xDke

590 T=Kc#*Drc

€00 Se=So0=0,

610 FOR Hs=1 TO Nrc-1 STEP 2
620 So=So+Hs*FHJIJo(T*Nz)>%#C(Hs)
€30 HEXT Hse

640 FOR Ms=2 TO Hrc-2 STEP 2
650 Se=Se+Hsx~ 1 Jo(T#He)*¥C (M)
6606 NEXT Hs

&E70 WM2(1)=CCBY+16€,%So0+14,%Se¢
680 HEXT I

696 MAT WZ=WNZ*#(Drc*Drc*2.%2P1-15.)
760 GINIT 200260

vio PLOTTER IS 565, "HPGL"

720 PRINTER IS 585

730 LIMIT PLOTTER 585,0,208,0,2€0
7406 VIEWPORT 22,85,19,122

750 WINDOW B,Hkc,-9,1

760 PRIMT "wysSS*"

7’70 GRID 25,1

780 PRINT "¥S36"

790 FOR I=0 TO Hkc

860 W=Wi I

8610 IF W>8. THENW €840

820 PENUP

830 GOTO 850

840 PLOT I,LGTCHD

850 MERT 1

860 FPEHUP
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870 FOR I=@ TO Hkc

B8O H=Hadl >

8306 IF W>0. THEH 920

J60 PEHUP

J10 GOTO 930

928 PLOT I,LGTCHD

9306 HEXT 1

940 PENUP

9506 FOR I=8 70 Hkc

9¢0 W=H1C1)D

976 IF W>8. THEHM 1000

980 PEHUP

998 GOTO 1016

10880 PLOT I,LGTCW

1018 HEXT 1

1820 PENUP

1836 FOR I=0¢ TO Hkc

1040 W=W2C1)

1850 1F W>B. THEHM 10880

1660 PEHUP

10706 GOTO t1e90

1088 PLOT I,LGTCW

1690 NEXT 1

1100 PEHUFP

1110 PAUSE

1120 PRIMNTER IS CRT

1138 PLOTTER S8% IS TERMIHATED

1146 END

11508 !

1166 DEF FHJo(X)> I Jo(X> FOR ALL X

1170 Y=ABS (XD

1180 IF Y>8. THEH 1286

11960 T=Y#*Y ! HART, #5845

1208 F=22714908429,5536033-T*(5513584.5647707522-T#5292.€171308334557
1210 F=2334489171877269.7-T*#(47765559442673.588-T*(4621722250831.71
12206 P=185962317621897804.-T*(44145829391815982.-T*P>

1236 P=284251483.52134357+T%(494038,79491813972+T%(884.72B367S6175S
1240 0=2344750B13658996.8+T4#(15815462449769. ?5°+T*(643306?4535.1332
1250 (=185962317621897733. +T*Q .

12606 Jo=P @

1270 RETURH Jo

128606 2=8.7Y ! HART, #6546 & €946

1290 T=2%2

1306 Fri=2204.5010439651804+T#(128,.€67758574871419+T#,90834793474802880
1310 Frn=8554.8225415066617+T%#(8894.4375329€6086194+T*Pn’

13260 Pd=2214.0488519147104+T#(130.88490049992388+7T)

1330 Pd=8554.8225415066628+T*(8903.8361417095954+T*Pd>

1346 Gr=13.99508976865960680+T*(1,B497327982345548+T*, pO93525%5329403
1350 On=-37.510534954957112-T*(46.093826814625175+T*0r>

1366 0d=921.56€697552€53090+4T%(74,428389741411179+T>

1370 0d=2400.6742371172675+T*(2971.9837452684920+T+0d>

13806 T=Y-.78539816339744828

1398 Jo=.2820947917738B7820%#SOR(Z2>*(COSCTI»*Pn/Pd-SIH(T»+Z+0n-0d>
1400 RETURH Jo

1410 FHEHD
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APPENDIX A.5 — EVALUATION OF PHASE MODULATION INTENSITY SPECTRUM

The normalized covariance function for phase modulation is
given by (2.50) in the main text, namely

2
k (L) = exp|- Ty py [1 - exp(-L)] - A[2 - p(L)] +
° [ AP (A.5-1)
2
u
+ 28 (1 - p(2)] exp(-p2/A) + B p(2) exp(- —§ (1 - exp(-bZ)1)]

for { 2 0, where Z is the time delay and p(l) is the temporal
_ 2

= Hpg*
Since (A.5-1) involves an exponential of an exponential of an

normalized covariance of the field process. Also p%

exponential, and because a wide range of parameter values are of
interest, care must be taken in numerical evaluation of this
covariance and its transform.

Observe first that

ko(O) =1 since p(0) = 1 . (A.5-2)
Also, as delay T 2 +», then p » 0, giving

- v 2 2
k(=) = exp[—PA Hp - 2A + 2A exp[-uP/A]] =0 . (A.5-3)

The spectrum of interest is given by
Wo(w) = 4 J dt, cos(wZ) k (Z) for w2 0 ; w=2Rf . (A.5-4)
0

The nonzero value of (A.5-3) at { = « leads to an impulse in
spectrum W (w) at w = 0. This limiting value, ko(m), must be
subtracted from covariance (A.5-1) prior to the numerical
Fourier transform indicated by (A.5-4).
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For rA pg << 1, the term

exp(- T4 w2 (1 - exp(-2)1] (A-5-5)

approaches its limiting value at { = +» as follows:

exp[— PA ug (1 - eXP(-C)]] - exp[— PA V%]

= exp[- PA yg] [exp[ré pg exp(-()] - 1]
~ exp(- PA pg] ré pg exp(-¢) . (A.5-6)

This is a fairly rapid decay with Z and will not lead to
numerical dlfflculty when r' ug << 1.
For large pr/A the term

exp[ [1 - exp(- b()]] (A.5-7)

is very sharp near Z = 0; in fact, it is given approximately by

2
7]

exp[— —% be, for ¢ near 0 . (A.5-8)
Therefore, we define the sharp component of covariance ko(C) as
2

Hp
ks(C) = exp[— A+ 13 exp[- 2 bc]] - exp(-A) for all . (A.5-9)

Then

kg (0) = 1 - exp(-B) , kg(=) =0 . (A.5-10)
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Now we let

ko (L) = [k (L) - K (2)] + k(Z) =

ke(Z) + k() (A.5-11)

where kf(c) is a flat function near { = 0. Then we can express
the desired difference as

ko(Z) = ko(®) = [ke(Z) = k (=)] + k(L) =
= k;(2) + k(L) , (A.5-12)

where functions kl(C) and ks(c) both decay to 0 at { = «. We now
employ two separate FFTs on each of the functions in (A.5-12).
The sharp component, ks(C), must be sampled with a very small

increment, AZ, when bug/A is large. On the other hand, the flat
component

ki(CQ) = ke(T) - k() (A.5-13)

can be sampled in a coarser fashion. Finally, if bug/A is
moderate, we work directly with ko(C) - ko(°) without breaking
it into any components.

Two programs are furnished in this appendix, one for moderate
bp%/A, and the other for the flat component (A.5-13) when bug/A
is large. For sake of brevity, the Fourier transform of the
sharp component (A.5-9) is straightforward and is not presented.
The particular covariance p(l) adopted is triangular,

p(l) =1 - l%l for |Z| <« Lc , 0 otherwise , (A.5-14)
c

but can easily be replaced. The parameter Cc is the cutoff value
of covariance p(l). '
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The number of samples, N, taken of the covariance, in order
to perform the FFT of (A.5-4), 1is rather large, so as to
guarantee a very small value of truncation error at the upper end
of the integral, despite the small increment Af. In order to
keep the FFT size, Mf, at reasonable values, the data sequence is
collapsed without any loss of accuracy according to the method
given in [8; pages 7 - 8] and [9; pages 13 - 16). The
trapezoidal rule is used to approximate the integral in (A.5-4),

for reasons given in [8; appendix A].

16 ! SPECTRUM FOR PHRSE MODULRTIOHW - MODERATE

20 Mup=1, ! MUsubF

30 Gp=.081 I Gamma”’

40 B== ' b

Sov =.2 I

€0 Zc=2.%P1 I Rho(Z) = 0 for |Z]|>2c; Z=zeta
ve Deiz=.,0aS ! 2eta increment

8uv H=cBBBeo I Maximum number of samplez of kodzetar
99 Mf=16384 ! Size of FFT

160 DOUBLE H,Mf,Ms,Hs !  INTEGERS

118 DIM XO163823,Y(163284)>,C0s(4896)

12e REDIM XC@sM¥-1),Y(B:Mf-1>,CozCB:Mf 4>

136 MAT ¥=(8.)>

140 MAT Y=(B.>

15@ T=2.#¥P1/n¢

166 FOR Ms=8 TO Mf-4

170 Caz(MecH>=CAS(T#Ms>D ! QUARTER-COSIHE TARELE
189 MEXT M=

196 Ta=Gp*Mup*Mup
200 IF H=08., THEH 226
216 Tb=Mup*Mup~-R
228 Tc=2.*A*FHExp(Tb>
230 Kinf=FHExp(Ta+2.%A-Tc> | CORRELATION AT INFIHITY
240 CoM A,Bs,2c,Ta,Tb,Tc,Kinf
25e T=1.-Kinf
2€0 PRIHNT 6,T
270 RCOI>=T*.5 ! TRAPEZOIDAL RULE
280 FOR Mz=1 TO M
290 Corr=FHKo(H=#Del2) ! CORRELATION ko(zetad
300 IF He<& THEH PRIMT HNz,Corr
318 IF ABS(Corri<1,E-36 THEH 356
328 Mz=H= MODULO Mf ! COLLAPSIHG
336 AlMed)=K(Msi+Corr

340 HEXT Hs

350 PRINT "Final value of Corr ="3Corrj3" Hs ="jHs=
360 MAT X=X#(Delz*d4.)

370 CALL FFt1d4d(Mr,Cosd*),K(*¥),Y(*x))>
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380
399
400
418
429
430
440
458
460
470
480
4950
500
Sig
Sz0
530
540
5%e
S6b
570
580
590
15351
ela
€20
638
640
650
1313%)
670
eca
€50

16
20
30
40
So
€0
’e
8o
Se
190
110
120
136
140
150
1€0
170
180
190
200

TR 8887

GIHIT

PLOTTER IS “GRRAPHICS"

GRAPHICS OM

WINDOW -2,2,-60,0

LINE TYPE 3

GRID t,10

LINE TYFE 1

Delf=1.-(Mf*Delz>

FOR Mz=1 TO Mf- 2

F=Mz#Delf ! FREGUEHCY
PLOT LGTC(F)>,18.*LGTC(K{Ms)I)

HEXT HMs

PEMHUP

FRUSE

EHD

]

DEF FHExp(Xminus) ! EXPC(-¥)> HITHOUT UHDERFLOH
IF ¥minuz>708.3 THEN RETURH 8.
RETURMN EXP(-Xminus)

FHEMD

!

DEF FHKo(Zeta) | CORRELATION ko(zetad
COM A,Bs,2c¢,Ta,Tb,Tc,Kinf
Rho=MAX(B.,1.-Zetas2c> | TRIAHGULAR RHO

Ei=Ta*(1,-FHExp{(2etal)

E2=Tb*(1.-FHExp(Bs*Zeta)>

E3=A#Rho*FHExp(E2)

RETURH FHExp(E1+RA*(2.-Rho)~-Tc*(1,-Rho)=-E3J-Kinf

FHEHWD

f

SUE FHt14C¢DOUBLE H,REAL Co=z(#),¥(*),¥(%)3 | H{=2~14=1€6384; © ZUE
! SEE APPEHDIX A.3

SPECTRUM FOR FHASE MODULATIOH - FLAT COMPOMHEHNT

Mup=1. ' MUsubP

Gp=.001 ' Gamma’

Bs=1. I b

A=0. ' R

2c=2.%P1 t Rho(2Z> = 0 for |2]|>2c; Z=zeta
Delz=,085 ! 2eta increment

H=60060 ' Maximum number of samples of kidzetad
ME=16384 ! Size of FFT

DOUBLE N, Mf,Mz,Hs ! IHTEGERS

DIM X(16384)>,Y(1€6384)>,Co0s(4096)

REDIM X(@:Mf-15,Y(B:tMf~-1),Cos(B:Mf 4>

MAT X=(08.)

MAT Y=(08.>

T=2.x01007

FOR Ms=0 TO Mf-4

CosC(Me>=COSC(T*Ms) ! QUARTER-COSIHE TRELE
MEXT WMs

Ta=Gp*Mup*Mup

IF A=6. THEH 226
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210
220
230
24
250
260
270
280
290
38
310
320
3306
340
350
38
370
386
3906
400
4106
420
430
440
150
460
470
4860
49¢
See
Sie
520
536
S48
556
5606
S7e
5806
590
600
él1e
620
&36
€49
650
660
€706
689
6950
7oe
710
720
730
740
756
760
770
780

TR 8887
Te=Mup+*Mup A
Tc=2.*A*FHExp(Tb>
Tb=5,ESS
Einmf=FHExp Ta+2.*A-Tc> b CORRELATIOH AT IHFIHITY
Ea=FHExp(H>
Tbb=Tb#*Bs
coM A,E=s,2¢,Ta,Tb,Tc,Kinf,Ea, Tbb
T=1.-Kinf-(1,-E&a> ! SUBTRACT SHARP COMPOMENT
PRINT 0,7
R{Br»=T*.,5 !  TRAPE2GIDARL RULE
FOR Ms=1 TO N
Corr=FHK1(Hs*Delz> ! CORRELATIOH kldzetad

IF Ms<E THEHW PRIHT Hs,Corr
IF ABES(Corr><1.E-38 THEH 3806
Ms=Hsz MODULO Mf t  COLLAPSIHG
R(MeH>=X(MsH>+Corr
NEXT Ms
PEINT “Final value of Corr ="jCorr;" Hz ="3Hz
MAT X=X*(Delz*4.>
CALL FFt1d4(Mf,Cos(*¥) ,N(*#),Y(*3)
GINIT
PLOTTER IS "GRAPHICS"
GRAFHICS OH
WIHDOW -2,2,-60,0
LINE TYPE 3
GRID 1,10
LIME TYPE 1
Delf=1.s(Hf*Delz>
FOR Ms=1 TI Mf-r2
F=Ms#Delf !  FREQUEHNCY
T=X{(Ms>
IF T>8. THEHW 550
PEHUP
GOTO 560
PLOT LGT(F)>,10.%LGT(T>
HEXT Ms
PENUP
PAUSE
END
]
DEF FHExp(¥minus) ' EXP(=-X> WITHOUT UNDERFLOW
IF “minus>788.3 THEH RETURH @.
RETURH EXP{-Xminus?

FHEMD

!

DEF FHK1(Zeta) | CORRELATIOH kil(zeta)
coMm A,Es,2c,Ta,Tb,Tc,Kinf,Ea, Tbb
Rho=MAX(®.,1.-2Zetas2c> | TRIANGULAR RHO

E1=Ta*(1.-FHExp(Zeta)>

E2=Tb#(1.-FHExp(Bs*Zetaj)>

E3=A*Rho*FHExp(E2)

E4=FHExp(Tbb#*Zet a>

Sharp=FHExp(A#(1.-E4>)-Ea ' ks(zeta)

RETURM FHExpC(E1+A#(2.-Rho>-Tc#*(1,-Rhod)-E3>-Kinf-Sharp
FHEHD

]

SUE Fft14C¢DOUELE MH,REAL Cos(#)>,X(*),Y(*)) | H{=2~14=1
i SEE APPEHDIX A.3
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APPENDIX A.6 — EVALUATION OF FREQUENCY MODULATION
INTENSITY SPECTRUM

The normalized covariance function for frequency modulation
is given by (2.48) in the main text, namely
2
ko(L) = exp[- Tj uh [exp(-3) + & - 1] - A[2 - p(L)] +
2
Mg
+ A p(z) exp(- =5 (exp-bz) + bt - 13]] for £ 20, (A.6-1)
Ab

where Z is the time delay and p(l) 1is the temporal normalized
covariance of the field process. Also, p% = “%G and

b = AwA/AwN. Since (A.6-1) involves an exponential of an
exponential of an exponential, and because a wide range of
parameter values are of interest, care must be taken in numerical
evaluation of this covariance and its transform.

Observe that

ko(O) =1, because p(0) =1 . (A.6-2)
Also, as delay { » 4=, then p » 0, giving
~ - 4 2 - - ] = -
ko(C) exp( PA Hp (T 1) 27| = kl(C) for T > 0 . (A.6-3)

This term, k,(Z), decays slowly with ¢ if T§ p2 << 1 .

The spectrum of interest is given by

Wo(w) = 4 I dZ, cos(wg) k (L) for w 2 0 ; w =2nf .  (A.6-4)
0

The spectrum corresponding to the limiting component, kl(C) in
(A.6-3), is directly available in closed form as
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Wi(w) = 4 [ dg cos(wt) k() =
0

2
I
4 Ty kg

= ex [r' 2 2A] . A.6-5

PI*a Hr [PA u%]z . o2 ( )
If PA p% << 1, this latter quantity is large and very sharply
peaked at w = 0; hence, this term has been subtracted out and
handled separately when rA pg << 1. The residual covariance,
ko(C) - k,(Z), then decays very rapidly with { and is easily
handled directly by means of an FFT. This breakdown is not
necessary when PA pg ~ 1 and is avoided, then, by handling
ko(C) directly in one FFT.

For u%/A >> 1, the term

2
7
exp[- —£= [exp(-bZ) + bZ - 1]] (A.6-6)
Ab

inside the exponential in (A.6-1) behaves like

2
u
exp[- —% % Cz] near {, = 0 , (A.6-7)

where its major sharp contribution arises. For example, if
Hp = 50, A = 1, then increment Al = .005 leads to values for

(A.6-7) of
exp(-0.156 n’) at Z = n AZ , (A.6-8)

which is adequately sampled in order to track its dominant
contribution; the actual sequence of values is 1, .856, .536,
.247, .083. For smaller pg/A, this sampling interval is more

than adequate.
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Two programs are furnished in this appendix, one each for the

2 The particular covariance p({)

cases of large and small PA M-

adopted is triangular,

p(L) =1 - 4] for |T] < Lo o 0 otherwise , (A.6-9)

but can easily be replaced. The parameter Cc is the cutoff
covariance value and is specified numerically in the examples in
figures 3.9a through 3.10b.

la 1 SPECTRUM FOR FREQUEHCY MODULATIOH - LARGE Gp*Muf-~Z
20 Mut =58, ' MUzubF

30 Gp=,8601 Vo Gamma’

406 Bs= ' b

59 H=.2 ! R

66 2c=2,#F1 I Rho(2Z> = 0 for |Z]|r2c; Z=zeta
Ve Dhelz=.885 ! Zeta increment

&8 H=c0880 P Maximum nunber of samplez of kodlzetad
96 Mf=16384 ! Size of FFT

1086 DOUBLE H,M{ Mz, Hs I IHWTEGERS

11e DIM X{18c34),Y(16384),Cos(4p96)>

126 REDIM XK{(B:MF-1),¥<O:1Mf-1),Co0s (D1 MFf/4)

136 MAT X=C(B.)>

140 MAT Y=<(@.>

150 T=2.%#P1/Nf

1606 FOR Ms=6 TO Mf-4

179 Coe(M=r)=COSCTaMs) ! QUARTER-COSIHE TABLE
1806 HEXT M=

199 Ta=Gp*Muf *Muf
200 IF A=8. THEH 220
210 Tb=Muf*Muf - (A*Bz*Bs)
228 Tc=FHExp(2.*A-Ta)>*Ta
239 Td=Ta*Ta
240 coM H,Bs,2c,Ta,Tb
256 ®(@>=,5 ! TRAPEZOIDAL RULE
266 FOR HNs=1 TO N
278 Corr=FHKOC(Hs#Delz) ! CORRELATIOH ko(zeta>d
280 IF Corr<1.E-20 THEH 320
290 M==Hz MODULO Mf t  COLLAPSING
3006 K(Mei=X(MeiX+Corr
3106 HNEXT N=
320 PRIHT "Final value of Corr =";Corr;" Hs =";3H
336 MAT X=k*(Delz)
340 CALL Fftl1d4(Mf,Cozs(#) R{*#),Y(%))
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GIHIT

PLOTTER IS "GRAPHICS"

GRAPHICS OH

WINDOW -4,2,-76,36

LIME TYPE 3

GRID 1,10

LIMNE TYPE 1

Delf=1, CME*Delz)

FOR Ms=1 TO NMNf-2

F=Mz*Delf !  FREQUEHNCY
T=X{(M:=)

IF T>6. THEH 499

PENUP

GOTO Soo

FLOT LGTC(F),1B8.xLGTC(T)

HEXT Mg

PENUP

Add=x<(B>-Tc-Td ! ORIGIH CORRECTIOH
F=1.E-4

FOR Hz=1 TO 108

W=2.%F1%F

Wi=Tc (Td+kH*WD

T=W1+Add

IF T>8. THEH 6108

PEHUP

GOTO 6218

PLOT LGT(F)>,18.*LGTCHI+Add)

F=F#%1.1 I FREQUEHCY
IF F>Delf THEH €56

HEXT Hs

PENUP

PAUSE

END

}

DEF FHExp{(Xminus) I EXP(=%)> WITHOUT UNMDERFLOMW
IF Hminus>708.3 THEHNH RETURH @.

RETURH EXAP(-XKminus)

FHEMD

]

DEF FNKo(Z2etad ! CORRELRTIOM ko(zetad
coM A,Bs,2¢,Ta,Tb
E1=FHExp(Zetad+2eta-1.

T=Bs*Zeta

E2=FHExp(T>+T-1,.
Rho=MAX(d,,1-2etas2c?> ! TRIAHGULAR RHO
T=Ta*E1+A*¥(2.-Rho)>-A*Rho*FHExp(Tb*EZ)
RETURH FHExp(T>

FHEHD

|

SUE Fft14(DOUELE H,REAL Cosi(%»,R{(*¥)>,¥Y (%)) | H{=Z2~14=
! SEE RAPFENDIX HA.3
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SPECTRUM FOR FREGUEHCY MODULATION - SMALL Gp#Mut~2

Mut=1, ' MUsubF

Gp=,0481 i Gamma’

Bs=1. I b

=.Z ! R

2e=2. %P1 ! Rho(2) = 0 for |2]|¥2c;
Delz=,0085 ! Zeta increment

H=180080 b Maximum number of sampl
Mf=8192 ' Size of FFT

DOUELE M,Mf,Me,H= ! INTEGERS

DIM H(8192>,Y(8192),C0=(2048)

REDNIM H{@:Mf-1>,%v(@:tMr~15,Cos(B:Mf 4>
MRT X=<(06.>

MAT Y=(@.)>

T=2.*PI1/MNf

FOR Ms=8 TO Mf- 4
Cos(MsHy=COSCT+M=> !
HEXT Ms

Ta=Gp*Muf £Muf

IF A=0. THEY 228
Tb=Muf*Muf. (A*Bz*Bs)
T=FHExp(2.*R~-Tad

QUARTER-COSIME TABLE

Tc=T*Ta

Td=Ta*Ta

Delf=.1#Ta (2, *PI> ! IHCREMENT IM FREQUEHNCY
COM A,Bs,2c,Ta,Tb

i@y =,5%#C1.,~-T) ! TRAPEZOIDAL RULE

FOR Hs=1 TO N
Corr=FHKol(Hs#Delz) !
IF ABS(Corr ><1.E-368 THEH 340

Ms=Hs MODULO Mf ! COLLAPSIHG
K{Mer=K(MsH>+Corr

HEXT Hs

PRINT "Final value of Corr =";Corr;" He ="j3HNs

MAT K=X*¥(Delz)
CALL Fftl1d4(Mf,Cos(*¥),XN(*),V(%.)>
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370 GIHIT

3E0 PLOTTER IS "GRAPHICS"

390 GRAFHICS ON

480 MINDOW -4,2,-70,30

410 LINE TYPE 3

429 GRID 1,18

430 LINE TYFE 1

440 FOR M==1 TO 2000

450 F=ts+Delf | FREQUEHCY

460 W=2.,%PI*F

470 WM1=Tc (Td+MHxl)D ! SHARP SPECTRAL COMFOHENT
480 T=MfxDelz*F

490 He=IHNT (T

500 Fr=T-Hs

S10 WZ=Fr#3(Hz+104+C1 . =-FrO>#X (N> ! BROAD SPECTRAL COHMFOHENT
5z0 PLOT LGTUCFY,10.#LGTCHI+W2)

539 HEXT Ms

S48 Mz=MAX(Hz, 1>

550 FOR Ms=Ns TO M{-2

5¢€0 F=Mz - C(MfxDelzd ] FREGUEHNCY

S7e W=2,#FP1*F

589 W1=Tc {Td+h*1)

599 HZ=¥{Me>

(1%]%] T=H1+MW2

o619 IF T7T>b. THEH €40

620 FPEHUP

€36 GOTO €56

€40 PLOT LGTC(F>, 1@, *LGT(T)O

650 MEXT Ms

€50 PEHUP

&70 PRUSE

&80 EHD

€90 !

49 DEF FHExp (Xminusz) ! EXFC-X)> WITHOQUT UNDERFLOWM
719 IF Yminus>708.3 THEH RETURN ©.

720 RETURH EXP(-Xminus)>

730 FHEND

740 !

ol DEF FMH¥ol(Zetad ! CORRELARTION ko(zetad>-klizetal
6O coM A,Bs,2:,Ta,Tb

770 E1=FHExw(Zetar+Zeta-1.

780 T=p:z#2eta

750 E2=FHExp<T +T-1.

8300 Roc=MAXO.,1-2eta 2c) ! TRIAHGULAR RHD

g1 T=Ta+Cl+A* (2, -F o)-A*Fho+*FHExp(Tb*E2)>

8z0 RETURM FHE.p ' TO-FHExp(Ta*(Zeta-1.>+2, *A)>

830 FHEHND

a4e !

esa SUE FYe 13 DOUEBLE MH,FEAL CosCx)  X(¥d,¥YC(x 3 1 H{=2-14=16384;
Scu SEE APFEHDIX A.3
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